# Dr. Pete Donnell 9/9/14

Monotonicity, nonexpansivity

and chemical reaction networks

Date: 9/9/2014

Time: 3:30PM-4:30PM

Place: 315 Armstrong Hall

Dr. Pete Donnell

Abstract:

There is currently significant research interest into chemical reaction networks (CRNs), largely due to their importance in biochemistry. CRNs are commonly modelled as ODEs. Given an ODE representing a CRN, characterising its possible asymptotic behaviour is in general a difficult task. A significant proportion of real world CRNs exhibit very simple behaviour, for example global convergence to a unique steady state. However, more exotic CRNs such as the Belousov-Zhabotinsky reactions, which can have a stable nontrivial periodic orbit, are not uncommon.

In this talk I will give a brief overview of two areas of theory, monotonicity and nonexpansivity, that can be used to constrain the possible dynamics of an ODE. It is known that a monotone ODE cannot have stable periodic orbits. If a monotone ODE also has a linear first integral, it is possible in some cases to show that it is nonexpansive and that every bounded trajectory converges to a steady state. Examples drawn from chemical reaction network theory will be presented as applications of this result.